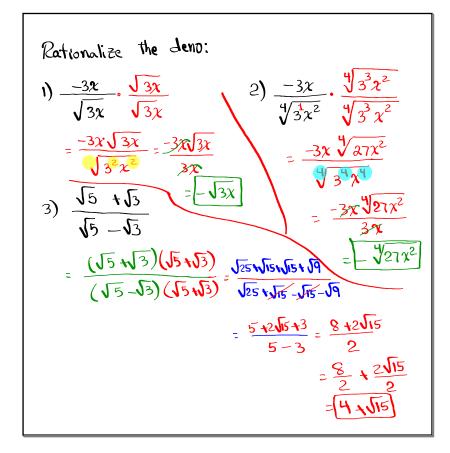
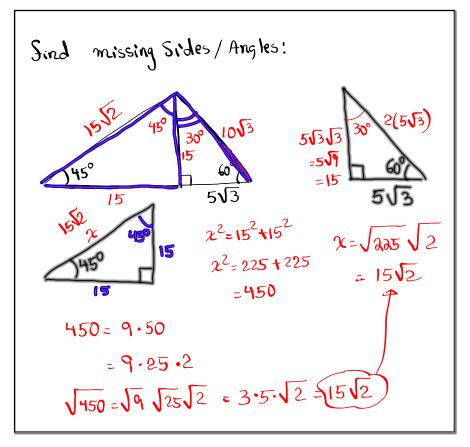


Class QZ 18
Solve
$$\xi$$
 Check: $\sqrt{4x+1}$ $+1=7$
Tsolate the radical $\sqrt{4x+1} = x-1$
Square both Sides $(\sqrt{4x+1})^2 = (x-1)^2 - 5 \text{ oil } \xi$.
Simplify
Check $x=0$
 $\sqrt{4}(0)+1 + 1=0$
 $\sqrt{1} + 1=0$
 $1 + 1=0$
 $folse$
Class QZ 18
 $\sqrt{4x+1} = x-1$
 $\sqrt{4x+1} = x-1$
 $\sqrt{4x+1} = (x-1)^2 - 5 \text{ oil } \xi$.
Simplify
 $\sqrt{4}(6)+1 + 1=6$
 $\sqrt{2} - 2x + 1$
 $\sqrt{4}(6)+1 + 1=6$
 $\sqrt{2} - 6x = 0$
 $x^2 - 6x = 0$
 $x =$


Solve
$$\sqrt{2x+1} + \sqrt{x} = 5$$

 $\sqrt{2x} + 1 = 5 - \sqrt{x}$, $(\sqrt{2x} + 1)^2 = (5 - \sqrt{x})^2$
 $2x + 1 = (5 - \sqrt{x})(5 - \sqrt{x})$
 $2x + 1 = 25 - 5\sqrt{x} - 5\sqrt{x} + (\sqrt{x})^2$
 $2x + 1 = 25 - 10\sqrt{x} + \chi$
 $2x + 1 = 25 - x = -10\sqrt{x}$
 $x - 24 = -10\sqrt{x}$
 $x - 24 = -10\sqrt{x}$
 $(x - 24)^2 = (-10\sqrt{x})^2$
 $(x - 24)^2 = (-10\sqrt{x})^2$
 $(x - 24)^2 = (-10\sqrt{x})^2$
 $(x - 24)(x - 24) = 100\chi$
 $(x - 24)(x - 14) = 5$
 $(x - 24)(x - 24) = 100\chi$
 $(x - 24)(x - 14) = 5$
 $(x - 24)(x - 24) = 100\chi$
 $(x - 24)(x - 14) = 5$
 $(x - 24)(x - 24) = 100\chi$
 $(x - 24)(x - 14) = 5$
 $(x - 24)(x - 24) = 100\chi$
 $(x - 24)(x - 14) = 5$
 $(x - 24)(x - 14)(x - 14) = 5$
 $(x - 24)(x - 14)(x - 14)(x - 14) = 5$
 $(x - 24)(x - 14)(x$

Solve


$$\sqrt{2+5} + \sqrt{2-3} = 4$$

 $\sqrt{2+5} = 4 - \sqrt{2-3}$
 $(\sqrt{2+5})^2 = (4 - \sqrt{2-3})^2$
 $2 + 5 = (4 - \sqrt{2-3})(4 - \sqrt{2-3})$
 $2 + 5 = 16 - 4\sqrt{2-3} - 4\sqrt{2-3} + (\sqrt{2-3})^2$
 $2 + 5 = 16 - 4\sqrt{2-3} - 4\sqrt{2-3} + (\sqrt{2-3})^2$
 $2 + 5 = 16 - 4\sqrt{2-3} - 4\sqrt{2-3} + (\sqrt{2-3})^2$
 $2 + 5 = 16 - 4\sqrt{2-3} - 4\sqrt{2-3} + (\sqrt{2-3})^2$
 $2 + 5 = 16 - 4\sqrt{2-3} - 4\sqrt{2-3} + (\sqrt{2-3})^2$
 $5 - 13 = -8\sqrt{2-3} + \sqrt{2-3}$
 $5 - 13 = -8\sqrt{2-3} - 8 =$

Solve
$$\int 2x - 3 = \sqrt{x - 2} = 1$$

 $\sqrt{2x - 3} = 1 + \sqrt{x - 2}$
 $(\sqrt{2x - 3})^2 = (1 + \sqrt{x - 2})^2$
 $2x - 3 = (1 + \sqrt{x - 2})(1 + \sqrt{x - 2})$
 $2x - 3 = 1 + \sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2} + (\sqrt{x - 2})^2$
 $2x - 3 = 1 + 2\sqrt{x - 2} + \sqrt{x - 2}$

Rationalize the deno:
1)
$$\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{\sqrt{2}} \cdot \frac{2\sqrt{2}}{\sqrt{2}} = 2) \frac{2}{\sqrt{3}\sqrt{2}} \cdot \frac{\sqrt{3}\sqrt{2}}{\sqrt{3}\sqrt{2}} = \frac{2\sqrt{3}\sqrt{2}}{\sqrt{3}\sqrt{2}} = \frac{\sqrt{3}\sqrt{2}}{\sqrt{3}\sqrt{2}} = \frac{\sqrt{3}\sqrt{2}}{\sqrt{3}\sqrt{2}} = \frac{\sqrt{3}\sqrt{2}}{\sqrt{3}\sqrt{2}} = \frac{\sqrt{3}\sqrt{2}}{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}\sqrt{3}\sqrt{3}}{\sqrt{3$$

Simplify
1)
$$(2-3i)(3-5i)=6-10i-9i+15i^{2}$$

 $=6-19i-15i^{2}$
2) $\frac{2+5i}{3-2i}$
 $=\frac{(2+5i)(3+2i)}{(3-2i)(3+2i)}=\frac{6+4i+15i+10i^{2}}{9+6i-6i-4i^{2}}$
 $=\frac{6+19i-10}{9-4(-3)}=\frac{-4+19i}{13}$

Consider
$$\chi^2 - 8\chi + 16$$
 + $\chi^2 + 10\chi + 25 = 9$
1) write in $(\chi - h)^2$ + $(\chi - k)^2 = r^2$
 $(\chi - 4)^2$ + $(\chi + 5)^2 = 3^2$
2) Center (4,-5) Radius 3
3) Intercepts None 4
4) Domain [1,7], Ranse [-8, -2] 5 $(33)^3$

Consider
$$16(x+3)^{2} + 25(y-4)^{2} = 400$$

i) write in $\frac{(x-h)^{2}}{\alpha^{2}} + \frac{(y+4)^{2}}{b^{2}} = 1$
Divide by 400 => $\frac{16(x+3)^{2}}{400} + \frac{25(y-4)^{2}}{400} = \frac{400}{400}$
 $\frac{(x+3)^{2}}{25} + \frac{(y-4)^{2}}{16} = 1$
2) Center (-3,4) $Q=5$ $b=4$
 $\frac{16}{16}$
2) Center (-3,4) $Q=5$ $b=4$
 $\frac{16}{16}$
3) Domain Range [0.8]

Hyperbolas:

$$\frac{(x-h)^{2}}{\alpha^{2}} - \frac{(y-k)^{2}}{b^{2}} = 1$$

$$\begin{pmatrix} (y-k)^{2} - (x-h)^{2} = 1 \\ b^{2} & \alpha^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (y-k)^{2} - (x-h)^{2} = 1 \\ b^{2} & \alpha^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-h)^{2} - (y-h)^{2} \\ (y-h)^{2} \\ (y-h)^{2} = 1 \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} = 1 \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

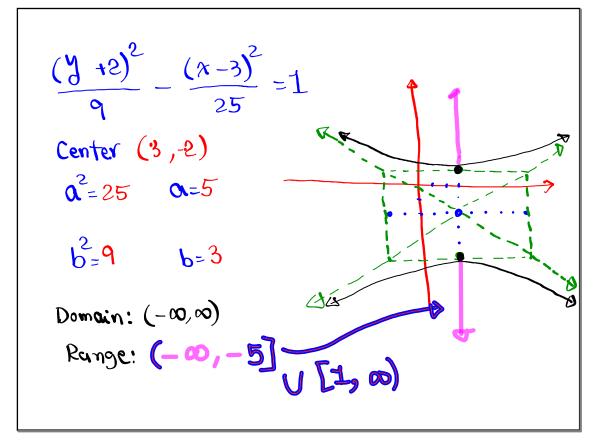
$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

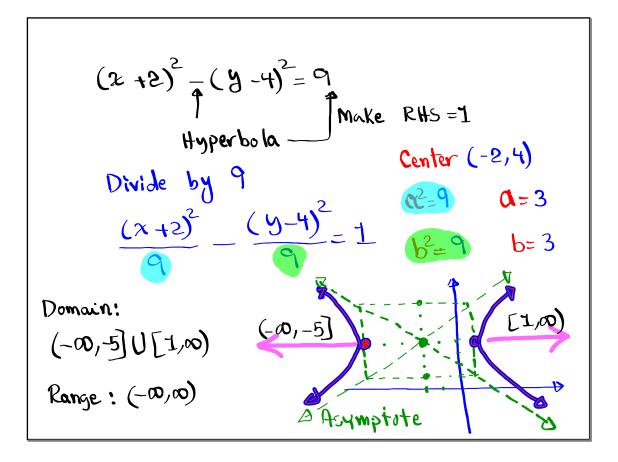
$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$


$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$


$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ (y-4)^{2} \\ \end{pmatrix}$$

$$\begin{pmatrix} (x-2)^{2} - (y-4)^{2} \\ \end{pmatrix}$$

4
$$\chi^{2} - 9(y-2)^{2} = -36$$

 $\frac{4 \chi^{2}}{-36} - \frac{9(y-2)^{2}}{-36} = \frac{-36}{-36}$
 $-\frac{\chi^{2}}{9} + \frac{(y-2)^{2}}{9} = \frac{-36}{-36}$
 $-\frac{\chi^{2}}{9} + \frac{(y-2)^{2}}{9} = 1$
Center (0,2)
 $\alpha^{2} = 9$ $\alpha = 3$
 $\beta^{2} = 4$ $\beta = 2$
Domain: $(-\infty, \infty)$
 $\chi^{2} = (-\infty, 0)$
 $\chi^{2} = (-\infty,$

$$4y^{2} - 25(2-2)^{2} = -100$$
Divide by -100, and Simplify

$$-\frac{y^{2}}{25} + \frac{(x-2)^{2}}{4} = 1 \implies \frac{(x-2)^{2}}{4} - \frac{y^{2}}{25} = 1$$
Center (2,0)
 $a^{2}=4$ $a=2$ (-00,0]
 $b^{2}=25$ $b=5$
D: (-00,0]U[4,00)
 $B^{2}=25 = 5$
R: (-00,00)
Exam 2: Monday start as early as 6:45 AM